,则λ1(u)<λ2(u)<···<λn(u)”
手中的圆珠笔快速的在洁白的稿纸上快速的写下了一个个的算式,法尔廷斯教授对于矩阵的构造,他总觉得还有一些可以挖掘的地方。
当然,这里的挖掘指的是对这项矩阵构造方法应用到其他领域的价值,而不是里面可能隐藏了什么东西。
事实上,在这篇论文中,法尔廷斯教授已经非常清晰的阐述了他的每一步研究思路与方法。
不仅如此,这些思路和方法还相当的精简与干练。
正如数学界对他的评价,这是一位以“深度抽象思维”著称,擅长从复杂问题中提炼核心结构的数学宗师!
“.一特征值λi(u)(i=1,···,n)明显
地依赖于u。同样二特征向量li(u)(i=1,···,n)明显地依赖于u。”
“那么在在研究cauchy问题(1)(2)的c1解u=u(t,x)的奇性形成机制时,必须考虑奇性的形成究竟是由特征值对u的依赖性导致的,还是由特征向量对u的依赖性导致的,抑或由两者联合导致的,并且考虑其奇性形成的相应形态与特性.”
“.”
手中的圆珠笔落下了一个符号后,徐川蓦然的停在了手中的动作,盯着稿纸上的算是眼眸中露出了若有所思的神色。
看着稿纸上密密麻麻的公式,又将视线挪移回了法尔廷斯教授的论文上后,他轻声的开口道。
“有意思,这是拟线性双曲型方程组由特征向量引发的奇性?”
拟线性双曲型方程组由特征向量引发的奇性是一个深刻的数学问题,涉及波动现象的数学描述、解的稳定性与奇点形成机制。
简单的来说,它是一个由几何性质主导的特征向量场,其本质是解的传播信息在特征方向上的累积或冲突。
不过在数学领域中,这算是一项相对较为高端的工具,理解这一过程不仅需要经典的pde理论,还需融合几何、拓扑甚至物理直观。
但这个问题在流体力学、相对论和宇宙学中具有重要应用,是纯粹数学与应用数学交叉的经典范例。
如果说对于拟线性双曲型方程组并不是很了解的话,那么它有一个看起来相似的同胞,那就是傅里叶级数!
是的,从数学领域上来说,尽管他们两个在数学上有着截然不同的研究方向,分别属于调和分析和偏微分方程理论。
但它们的核心区几乎全都体
本章未完,请点击下一页继续阅读! 第2页 / 共5页